Performance Evaluation of Single Image Super-Resolution Models Based on Perceptual Quality and Naturalness

Rana A. Kader El-Bahnasawy

Information Technology Department, Faculty of Computers and Artificial Intelligence, Cairo University, Giza, Egypt

Hoda Mohamed Onsi

Information Technology Department, Faculty of Computers and Artificial Intelligence, Cairo University, Giza, Egypt

Reda El Khoreby

Information Technology Department, Faculty of Computers and Artificial Intelligence, Cairo University, Giza, Egypt

Abstract

Single-image super-resolution (SISR) constitutes a fundamental challenge in image processing, focusing on the reconstruction of high-resolution images from their low-resolution counterparts while enhancing fine details and textures to achieve superior quality of visual perception. Estimating a high-resolution image from its low-resolution counterpart is an ill-posed inverse problem, since there are infinitely many solutions that satisfy the measurements. SISR has seen significant advancements and gained significant attention with the introduction of deep learning-based models, particularly Generative Adversarial Networks (GANs). With varying performance of the different architectures across different metrics, evaluating the performance of these models requires a comprehensive analysis of both perceptual quality and naturalness. This study evaluates five deep learning-based pre-trained and fine-tuned SISR models (GANs, PSNR-Large, PSNR-Small, Noise-Cancel, and LapGAN) using perceptual and naturalness metrics (BRISQUE, CLIPIQA, CLIPIQA+, TRES, NIQE, and ILNIQE) to identify optimal architecture for visual quality enhancement. Datasets used for evaluation are DIV2K and other benchmark datasets. Results indicate that GAN-based models excel in perceptual quality metrics (CLIPIQA, TRES), suggesting superior high-frequency detail generation. It achieved a 2.5% improvement in CLIPIQA score compared to Noise-Cancel and a 1.1% improvement in NIQE score compared to LapGAN. This study provides insights into the trade-offs between naturalness and perceptual quality in SISR models, aiding researchers in selecting appropriate architectures based on application-specific requirements.

Keywords

Deep Learning, Generative Adversarial Networks (GANs), Image Quality Assessment, No-Reference Metrics, Single Image Super Resolution (SISR).