

Easy Implementation of Nested Grid Refinement on Lattice Boltzmann Method for Numerical Speed Up Purpose

David Sugijanto

Bandung Institute of Technology, Bandung, Indonesia

Yohanes Bimo Dwianto

Bandung Institute of Technology, Bandung, Indonesia

Pramudita Satria Palar

Bandung Institute of Technology, Bandung, Indonesia

Lavi Rizki Zuhal

Bandung Institute of Technology, Bandung, Indonesia

Abstract:

Lattice Boltzmann method (LBM) is a computational fluid dynamics (CFD) method that shines on uniform cartesian grid even when used for complex geometry. However, keeping the uniformity is a loss potential, especially in an external flow case which needs a large domain size relative to geometry. In that case, up to 80% of grid nodes do not need high resolution because they only contain low gradient solutions. To optimize computational performance, a non-uniform grid scheme is needed. One way to do this is by using a grid refinement method proposed by Rohde. In this paper, Rohde's refinement method will be implemented with simplicity in mind to produce a nested grid refinement algorithm. The algorithm is tested to flow over cylinder of various Re from 10-400 in 2, 3, 4, and 5 levels of nested grid refinement. The results of all cases are almost perfect, visually and parametrically, compared to no-refinement case. The speed-up gained is up to 23 times compared to no-refinement case.

Keywords:

Grid refinement, lattice Boltzmann method, multiresolution, computational performance.