Harnessing Macroalgae from South Sulawesi: An In Vitro Approach to Enhancing Ruminant Efficiency and Methane Mitigation

A. Natsir *

Animal Nutrition Department, Faculty of Animal Science, Hasanuddin University, Makassar, Indonesia

R. Pazla

Department of Animal Nutrition and Feed Technology, Faculty of Animal Husbandry, Universitas Andalas, Padang 25175, West Sumatra, Indonesia

R. Hidayat

Department of Animal Nutrition and Feed Technology, Faculty of Animal Husbandry Universitas Padjadjaran, West Java, Indonesia

N. Ginting

Department Animal Sciences, Faculty of Agriculture, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia

Ismartoyo

Animal Nutrition Department, Faculty of Animal Science, Hasanuddin University, Makassar, Indonesia

S. Syahrir

Animal Nutrition Department, Faculty of Animal Science, Hasanuddin University, Makassar, Indonesia

Abstract:

The livestock sector faces a dual challenge: enhancing ruminant productivity while mitigating methane (CH₄) emissions, a key contributor to climate change. This in vitro study evaluates the potential of seven macroalgae species from South Sulawesi, Indonesia, as feed additives to improve microbial efficiency and reduce CH₄ production in ruminants. The species assessed include four cultivated macroalgae (Eucheuma cottonii, Eucheuma denticulatum, Caulerpa sp., Gracilaria sp.) and three non-cultivated species (Halimynea sp., Caulerpa sp., Sargassum sp.), tested at inclusion levels of 0%, 5%, 10%, and 15%. A significant interaction between macroalgae type and inclusion level was observed, affecting microbial protein synthesis, bacterial and protozoal populations, and CH₄ emissions (p < 0.05). Saponin-rich species, particularly Caulerpa sp. (cultivated and non-cultivated) and Eucheuma denticulatum, demonstrated the greatest efficacy, enhancing microbial protein synthesis and bacterial populations while reducing protozoal activity and CH₄ emissions at 10%–15% inclusion levels. In contrast, tannin-rich species such as Sargassum sp. showed limited impact on CH₄ mitigation, underscoring the complex role of bioactive compounds in modulating rumen microbial dynamics. These findings highlight the promise of South Sulawesi's macroalgae as a sustainable strategy for improving livestock productivity and minimizing environmental impacts. Future research should focus on optimizing the use of saponin-rich macroalgae and exploring synergistic effects among species to support global sustainability goals.

Keywords:

Macroalgae, Feed Additives, Methane Mitigation, South Sulawesi, Saponins and tannis, In Vitro.