Thymosin α 1 Driven CD8+ T-Cell Activation and Cytotoxic Reset in Breast Cancer: Integration of in vitro Immunity and Transcriptomic Context

Smriti Mishra

Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Post-Somathne, Panvel, Mumbai, Maharashtra, India

Gaurang Telang

Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Post-Somathne, Panvel, Mumbai, Maharashtra, India

Anurag Sureshbabu

BioRadius Therapeutic Research Pvt. Ltd., Pune, Maharashtra, India School of Bioengineering, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, India

Senthil Thyagarajan

BioRadius Therapeutic Research Pvt. Ltd., Pune, Maharashtra, India

A.W Santhosh Kumar

Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Post-Somathne, Panvel, Mumbai, Maharashtra, India

Rajshri Singh

Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Post-Somathne, Panvel, Mumbai, Maharashtra, India

Abstract

Background: Thymosin $\alpha 1$ (T $\alpha 1$) is a thymic peptide known to restore immune competence, yet its direct effect on CD8 $^+$ T-cell effector function and exhaustion reversal in solid tumours remains underexplored. We integrated in vitro cytotoxic assays and transcriptomic profiling to delineate how T $\alpha 1$ modulates CD8 $^+$ T-cell function and its relevance in breast cancer immunity.

Methods: CD8+ T cells enriched from healthy donor PBMCs (n = 10) were cultured under four conditions: unstimulated, CD3/CD28-activated, $T\alpha1$ -treated and combined CD3/CD28 + $T\alpha1$ or $T\alpha1$ rescued exhausted T cells. Functional endpoints included proliferation (CFSE), activation (CD69, CD25, HLA-DR), exhaustion markers (PD-1, TIM-3, LAG-3), cytokines (IL-2, IFN- γ , TNF- α , IL-10), and granzyme B secretion. Cytotoxicity was assessed against MDA-MB-231 breast cancer cells and CD44+-enriched cancer stem cells (CSCs) via Annexin V/PI apoptosis and proliferation assays. A compact four-gene $T\alpha1$ Response Index ($T\alpha1$ -RI: TLR9, TLR2, IRF1, NLRC5) was evaluated in TCGA-BRCA and single-cell datasets to contextualize in vitro findings.

Results: $T\alpha1$ synergized with CD3/CD28 stimulation to increase CD8+ T-cell proliferation, activation, and IL-2/IFN- γ secretion while reducing exhaustion markers in chronically stimulated cells. Functionally, $T\alpha1$ -treated CD8+ T cells induced greater apoptosis and proliferation arrest in both parental tumour and CSC targets, accompanied by enhanced granzyme B release. In silico, $T\alpha1$ -RI correlated with antigen-presentation and cytotoxic programs and was enriched in CD8-like T-cell clusters, mirroring the functional phenotype observed in vitro.

Conclusions: Convergent experimental and transcriptomic evidence supports $T\alpha 1$ as a multipronged immunomodulator that reinforces CD8⁺ T-cell activation, restores cytotoxicity in exhausted states, and sensitizes resistant breast cancer cells to immune attack. These findings position $T\alpha 1$ as a potential adjunct to existing T-cell-based immunotherapies.

Keywords

Thymosin α1, CD8+T cells, T-cell exhaustion, Breast cancer, Cancer stem cells, Cytotoxicity, Transcriptomics.