Enhanced Drug Efflux Drives Multidrug Resistance in Radio-Resistant Mouse Breast Cancer Cells

Yurdillia I.V

Department of Microbiology and Immunology, Inje University College of Medicine, Busan, South Korea

Quan XG

Department of Microbiology and Immunology, Inje University College of Medicine, Busan, South Korea

Haque M.M

Department of Microbiology and Immunology, Inje University College of Medicine, Busan, South Korea

Park JH

Department of Microbiology and Immunology, Inje University College of Medicine, Busan, South Korea

Kim HJ

Department of Microbiology and Immunology, Inje University College of Medicine, Busan, South Korea

Park S *

Department of Microbiology and Immunology, Inje University College of Medicine, Busan, South Korea

Abstract:

Multidrug resistance (MDR) cause death in over 90% of cancer patients. Several MDR mechanisms have been proposed, including drug inactivation, impaired apoptosis, and the most common is overexpression of ATP-binding cassette (ABC) transporters, which pump drugs out of cancer cells, thereby reducing drug efficacy. TUBO-P3, radioresistant cell line, was developed through in vivo passages of TUBO-P0, radiosusceptable mouse breast cancer cell line with radiation therapy. Chemo-susceptibility tests using CCK-8 assay revealed that TUBO-P3 cells exhibited 2- to 50-fold increases in IC50 values compared to TUBO-P0 cells for cisplatin, doxorubicin, vinorelbine, cyclophosphamide, paclitaxel, and 5-fluorouracil (5-FU). These data represent the presence of MDR in TUBO-P3 cells; however, the underlying mechanisms remain unclear. This study investigates the mechanisms of MDR in TUBO-P3 cells, with a focus on drug efflux activity. Flow cytometry analysis demonstrated that after treatment with doxorubicin (2.5µM for 1, 4, and 8 hours), drug concentrations in TUBO-P3 were significantly lower than in TUBO-P0 at 8 hours, suggesting that while drug influx was similar at the first 4 hours, enhanced efflux mechanisms in TUBO-P3 contribute to reduced drug retention once saturation is reached. Furthermore, drug efflux tests at 30 minutes and 2 hours showed higher activity in TUBO-P3 and RT-PCR confirmed upregulation of the ABCG2 transporter gene expressions in this cells. These results suggest that the MDR phenotype in radio-resistant mouse breast cancer cells is primarily mediated by alterations in intracellular drug concentrations through enhanced drug efflux activity.

Keywords:

ABC transporter, Drug efflux, Flow cytometry, Mouse breast cancer, MDR mechanism.