17th – 18th June – 2025

Preparation and Characterization of Green Curcumin Loaded Polyglycerol Polymeric Nanoparticles: Stability and Molecular Docking

Rania Hassan Hussein Ahmed

Egypt Japan University for Science and Technology, Faculty of Basic and Applied Sciences, Biotechnology Department, New Borg El Arab City, Alexandria, Egypt

Mahmoud E. Soliman

Egypt-Japan University of Science and Technology (EJUST), New Borg El Arab, Alexandria 21934, Egypt

Sherif F. Hammad

PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, 21934, Alexandria, Egypt

Hesham S. M. Soliman

PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, 21934, Alexandria, Egypt

Ahmed Abdel-Mawgood

Egypt-Japan University of Science and Technology, Biotechnology Program, Alexandria Governorate, New Borg Al Arab 21934, Egypt

Abstract:

Polymeric based drug delivery systems emerged as a promising approach in drug loading means to maximize drug bioavailability and lessen its accidental effects. Inflammatory diseases which affect millions worldwide can be controlled by anti-inflammatory drugs as curcumin. While curcumin is recognized for its potent anti-inflammatory properties, its efficacy is limited by the extremely low water solubility (0.6 µg/ml) and bioavailability. Polymeric formulations effectively overcome these challenges by creating a sustained-release system that improves drug retention based on the larger size of the polymeric loaded drug in comparison to the free drug, ensures more consistent delivery because of the extended-release profile of the produced particles, and enhances therapeutic efficacy by size dependent internalization of nano range particles. The aim of this work is to establish a green, more advantageous and reliable polymeric delivery system that can be used for curcumin loading as polymeric nanoparticles at the adjusted size (100 to 200) for cell internalization.

Keywords:

BTK inhibitor, Curcumin, Nanoparticles, Polymeric system, Solubilization.