International Conference on 2025

13th - 14th August 2025

Advanced Method for Toxic Antimony (Sb) Detection in Environmental Water

M. M López Guerrero

Department of Analytical Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos, Malaga, Spain

Instituto Universitario de Materiales y Nanotecnología, IMANA, University of Malaga, Campus de Teatinos, Malaga, Spain

C. Aguilar López

Department of Analytical Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos, Malaga, Spain

A. Doblado Onieva

Department of Analytical Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos, Malaga, Spain

E. I. Vereda Alonso

Department of Analytical Chemistry, Faculty of Sciences, University of Malaga, Campus de Teatinos, Malaga, Spain

Instituto Universitario de Materiales y Nanotecnología, IMANA, University of Malaga, Campus de Teatinos, Malaga, Spain

Abstract:

The rising concern over trace antimony (Sb) contamination in water stems from its harmful effects on ecosystems and living organisms. As a result, there is a growing demand for analytical methods capable of detecting Sb at ultra-low concentrations. This study presents an optimized approach for the extraction, preconcentration, and determination of Sb in water, leveraging a newly synthesized adsorbent material, M@GONIO. This innovative compound facilitates the extraction and preconcentration of Sb from aqueous samples via magnetic solid-phase extraction, making it a promising tool for environmental water decontamination.

The analytical method includes a second preconcentration step using hydride generation coupled on-line with graphite furnace atomic absorption spectrometry (GFAAS). This dual preconcentration strategy significantly enhances sensitivity, achieving a detection limit (LOD) of 0.0018 μ g/L, a quantification limit (LOQ) of 0.0060 μ g/L, and a relative standard deviation (%RSD) of 2.22 for a 0.1 μ g/L standard. These parameters highlight the method's exceptional sensitivity, precision, and suitability

International Conference on 2025

13th - 14th August 2025

for trace Sb detection, addressing critical needs in environmental monitoring and toxicological assessment.

Keywords:

Toxic elements, antimony, magnetic solid phase extraction, graphite furnace atomic adsorption spectrometry, magnetic graphene oxide.