MAGE-A3-Directed T-Cell Immunity in Lung Cancer: Convergence of Systematic Evidence, Patient-Level Single-Cell Context, and *in vitro* Validation

Gaurang Telang

Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Post-Somathne, Panvel, Mumbai, Maharashtra, India

Smriti Mishra

Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Post-Somathne, Panvel, Mumbai, Maharashtra, India

Anurag Sureshbabu

BioRadius Therapeutic Research Pvt. Ltd., Pune, Maharashtra, India School of Bioengineering, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, India

Senthil Thyagarajan

BioRadius Therapeutic Research Pvt. Ltd., Pune, Maharashtra, India

A.W Santhosh Kumar

Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Post-Somathne, Panvel, Mumbai, Maharashtra, India

Rajshri Singh

Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Post-Somathne, Panvel, Mumbai, Maharashtra, India

Abstract

Background: MAGE-A3 is a cancer-testis antigen with restricted normal-tissue expression and recurrent up-regulation in epithelial tumours. Our recent systematic review synthesised clinical and preclinical evidence showing frequent immunogenicity but platform-dependent efficacy, underscoring the need for biomarker-guided translation. Complementing this, an *in silico* analysis highlighted MAGE-A3's association with antigen-presentation pathways.

Methods: We assessed MAGE-A3-directed responses in A549 models using bulk CD3⁺ T cells. Functional readouts included proliferation (CFSE), tumour apoptosis against parental A549 and CSC-enriched fractions (Annexin V/PI), effector release (granzyme B ELISA), and checkpoint/exhaustion markers (PD-1, TIM-3, TIGIT, CTLA-4) by flow cytometry. To situate these findings clinically, we performed patient-level single-cell analysis in LUAD (TISCH2/GSE131907). Malignant/epithelial and immune lineages were taken from provided annotations; CD8 T cells were defined by minor-lineage or an expression-based fallback. We derived an exhaustion-memory (E-M) index (z-exhaustion minus z-memory markers) and modelled E-M ~ MAGEA3_mean × APM_high + CD274 (APM module = mean HLA-A/B/C, B2M, TAP1/2) using OLS with 95% CIs; stratified slopes were reported.

Results: MAGE-A3 stimulation increased CD3+ T-cell proliferation, tumour apoptosis and granzyme B release versus unstimulated controls, with differential susceptibility of CSC-like targets. The single-cell module related epithelial MAGEA3_mean to the CD8 E-M balance in a manner contingent on antigen-presentation context (APM_high), providing patient-level alignment with the bench findings.

Conclusions: Systematic, computational and experimental data converge to support MAGE-A3 as a rational immune target in lung cancer, while highlighting antigen presentation and exhaustion as actionable levers for combination strategies.

Keywords

Mage-a3, lung cancer, cd3+t cells, single-cell rna-seq, antigen presentation.