On Solvability of the Nonlinear Biharmonic Equation Subjected to the Swell Pressure

Lyailya Zhapsarbayeva

L.N. Gumilyov Eurasian National University, Astana, Kazakhstan

Akkenzhe Issenova

L.N. Gumilyov Eurasian National University, Astana, Kazakhstan

Abstract

This work focuses on the flexure of thin plates caused by expansive soil movements [1, 2]. The existing experimental evidence suggests that this expansive soil poses a significant threat to underground thin plates [3].

We state well-known equation of the small deflection of thin plates

$$\frac{\partial^{2}}{\partial x^{2}} \left[D \left(\frac{\partial^{2} w}{\partial x^{2}} + v \frac{\partial^{2} w}{\partial y^{2}} \right) \right] + 2(1 - v) \frac{\partial^{2}}{\partial x \partial y} \left(D \frac{\partial^{2} w}{\partial x \partial y} \right) + \frac{\partial^{2}}{\partial y^{2}} \left[D \left(\frac{\partial^{2} w}{\partial y^{2}} + v \frac{\partial^{2} w}{\partial x^{2}} \right) \right] - q = 0,$$
(1)

where ν is Poisson's ratio $\left(0 < \nu < \frac{1}{2}\right)$, q is the distributed load, and D is flexural rigidity of the plate.

So, by using equation (1), we consider the following BVP

$$\Delta^2 w = Q_g(x, y) - Q_s(x, y), \qquad \forall (x, y) \in \Omega \subset \mathbb{R}^2,$$
 (2)

$$w|_{\partial\Omega} = 0, \quad \frac{\partial}{\partial \vec{n}} w|_{\partial\Omega} = 0,$$
 (3)

where $Q_g(x,y)$ is the distributed weight load, $Q_s(x,y)$ is the distributed load of expansive soil.

We denote by $w_0(x, y)$ the solution of the linear problem

$$\Delta^2 w_0 = Q_s(x, y), \qquad \forall (x, y) \in \Omega \subset \mathbb{R}^2, \tag{4}$$

$$w_0|_{\partial\Omega} = 0, \quad \frac{\partial}{\partial\bar{n}} w_0|_{\partial\Omega} = 0.$$
 (5)

It is well-known [4] that there exists a unique solution of the problem (4), (5).

Let $\tilde{v}(x,y) = w(x,y) - w_0(x,y) \ \forall (x,y) \in \Omega$. Then v(x,y) is the solution of the following nonlinear boundary value problem

$$\Delta^2 v = \alpha k(x, y) e^{-v(x, y)}, \qquad \forall (x, y) \in \Omega \subset \mathbb{R}^2, \tag{6}$$

$$v|_{\partial\Omega} = 0, \quad \frac{\partial}{\partial\bar{n}}v|_{\partial\Omega} = 0,$$
 (7)

where $v(x,y) = \alpha \tilde{v}(x,y)$, $k(x,y) = \sigma_0 D_v e^{-\alpha w_0(x,y)}$ with α is some physical constant.

We denote by $C^{(4)}(\Omega)$ the set of functions u(x,y) whose partial derivatives up to order four are all continuous on Ω . And $C^{(4)}_{w_0}(\Omega)$ denotes the set of functions $v(x,y) \in C^{(4)}(\Omega)$ that satisfy inequality $0 \le v(x,y) \le w_0(x,y)$ for all $(x,y) \in \Omega$.

Furthermore, only the circular plate is studied, i.e. $\Omega = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$.

Theorem: There exists a unique solution v(x,y) of the nonlinear problem (6), (7) in $C_{w_0}^{(4)}(\Omega)$.

Funding: This research is funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan (Grant No AP23489433).

Keywords

Existence, uniqueness, swell pressure, biharmonic equation.