

The Study of Flavonoid Interaction with Carbon Quantum Dots (CDQs) as the Basis for the Fluorometric Point-of-Need Flavonoid Quantification

Tischenko V.

Faculty of Biotechnologies (BioTech), ITMO University, Russia

Zaitsev V.

Faculty of Biotechnologies (BioTech), ITMO University, Russia

Vakhitov T.

Faculty of Biotechnologies (BioTech), ITMO University, Russia

Abstract:

The quantification of flavonoids is needed for various products, including raw plant materials, foods, pharmaceuticals, cosmetics, perfumes and the by-products of various industries. The conventional colorimetric method for measuring total flavonoid content by use of Al³⁺ salts is inexpensive and easily performed, but its results depend on the chemical structure of the analytes. We studied the interactions between two kinds of carbon quantum dots (CQDs), and a selection of flavonoids alone and in complex with Al³⁺. Fluorescent CQDs were produced by the microwave-assisted method from L-cysteine (_{cys}CQD with blue emission) and from citric acid and urea (_{cur}CQD with green emission). Quercetin, rutin (quercetin-3-O-rutinoside) and taxifolin (dihydroquercetin) were used as analytes at concentrations of 0.01–1 µM. Quercetin and rutin caused effective quenching of visually detected CQDs fluorescence at concentrations of 0.1–0.3 µM for _{cys}CQD or 0.3–0.5 µM for _{cur}CQD. The quenching action of taxifolin is markedly lower than of quercetin or rutin. Aluminium chloride prevented quenching of CQDs fluorescence and caused a right shift of emission spectra in triple complexes CQD+quercetin+Al³⁺ at excitation wavelengths of 365 nm. We suppose that this effect can be due to the Förster resonance energy transfer (FRET) from CQDs to quercetin+Al³⁺ complex. Both the CQDs fluorescence quenching by flavonoids and FRET-mediated emission wavelength shift could be used for the non-instrumental fluorometric point-of-need flavonoid quantification