International Conference 2025

5th - 6th December 2025

Flood Risk Assessment in Niger Delta, Nigeria Using Geospatial and Machine Learning Approaches

Okes Imoni

Okes Innovation Limited, 22 Tollgate Court stanway, CO3 ORE Colchester, England

Prince Chukwuemeka

Acehub Technologies Ltd, 27 May 2025 with the registered office located in Gravesend, Kent, England

Abstract:

Flooding is among the most destructive hazards in Sub-Saharan Africa, frequently disrupting livelihoods, agriculture, and infrastructure. This study applies integrated geospatial and machine learning techniques to evaluate flood risk in Niger Delta, Rivers State, Nigeria, a hotspot within the Lower Niger Delta. Multi-temporal Landsat data (1975–2023), Sentinel-1 SAR (2018–2022), and satellite altimetry (2018-2024) were used to examine land use/land cover dynamics, flood inundation, and water level fluctuations. Findings show built-up areas expanded by 595% (10.09 km² in 1975 to 70.12 km² in 2023), while croplands shrank from 238.98 km² to 14.13 km². SAR data revealed October as the flood-peak month, with inundation increasing from 101.50 km² in 2018 to 180.63 km² in 2022. Altimetry confirmed seasonal peaks of 12-15 m, with a 1-2 month lag between upstream (Lokoja) and downstream tributaries. Machine learning models (Random Forest, Gradient Boosting, SVM) predicted flood susceptibility with high accuracy, with Random Forest performing best (91% accuracy, AUC = 0.93). The study highlights the combined influence of dam releases, climate variability, and unregulated urban expansion on flood risk. The integration of SAR, altimetry, and machine learning provides a robust framework for flood monitoring and early warning in poorly gauged river basins. Findings support the need for coordinated dam management, strict land use planning, and community-based adaptation strategies in the Niger Delta.

Keywords:

Flood risk, Sentinel-1 SAR, Satellite Altimetry, Machine Learning, Land Use Change, Niger Delta.